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Abstract—We consider arbitrary rectangular QAM signaling
in orthogonal space-time block code (OSTBC) diversity systems
over correlated fading channels with Gaussian channel gains.
We first decorrelate the physical branches into uncorrelated
virtual branches to obtain a general moment generating
function (MGF), from which closed-form symbol error
probability (SEP) is then obtained for OSTBC with generalized
complex orthogonal design (GCOD) and it is discovered that
different information symbols may yield different SEP’s.

1. INTRODUCTION

Due to its simplicity and orthogonal nature, OSTBC can
transform multiple-input multiple-out (MIMO) channels into
equivalent single-input single-output (SISO) channels [1]-[3].
It is now widely known that, for the same diversity order, the
SEP for OSTBC systems takes the same form as that for
maximal ratio combining (MRC) systems, but with a
performance loss [2]. Of all the studies on SEP evaluations
for QAM signaling in MRC systems [4]-[6], the SEP
performance for OSTBC with generalized complex
orthogonal design (GCOD) has not been treated.

The usual approach to obtain the MGF for correlated fading
channels is to Laplace transform the correlative probability
density function (PDF) of the received signal-to-noise ratio
(SNR) for the fading model in concern [4]. A simpler
approach is to first decorrelate the physical channels into
uncorrelated virtual channels. Since the channels have
Gaussian channel gains, the PDF of SNR for the virtual MRC
channels will be a simple complex Gaussian density. Then it
becomes much easier to obtain the MGF, from which the SEP
can be derived. The MGF expression thus derived can have
rather universal applications. First, it can be easily applied to
correlated Rayleigh, Nakagami-m, as well as Ricean channels,
etc.,, thus obviating the needs of calculating each MGF
individually using the correlative PDF corresponding to
various fading models. Second, it can be readily modified to
express various scenarios of channel power distribution as
well as joint fading models.
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In this paper, we explore performance of OSTBC with
GCOD for arbitrary rectangular QAM signaling over
correlated fading channels. We will derive the SEP
expressions for the general case of virtual channels having a
combination of identical and distinct channel powers for
various fading models.

II. OSTBC DIVERSITY IN CORRELATED FADING
CHANNELS

Consider a wireless communication system with P transmit
antennas and Q receive antennas. Let the equivalent baseband
path gain from transmit antenna p to receive antenna g be
denoted by 7, p=12,.,P, ¢=12,.,0 . There are

L = PQ terms in the set {hpq }. Stack these terms to form an

POx1 vector h:[hlahza'”hpahmlahmza ”'5hL]T:
[Bgisets Bops hlz,‘--,hPQ]T, where T denotes transpose
and h =h,,h, =h,, - . The Ith channel gain is

By=h,+jh, ., 1=12,.,L with h, and h; being
independent real random variables (RV) with means /f_ld ; ]/_ls ;
and variances o, and ., respectively.  So,
E[h)=F =h,+ jh, and VIh]=o} = Ellh 1= | B [
=0, + o, . where E[] and V] respectively denote
expectation and variance. Assuming flat fading, when an
information symbol X, (k=1,2,.,K , where K is the

number of information symbols chosen for one OSTBC
transmission block) is transmitted, the received signal and

noise of the /th channel are /,x, and A, respectively.

n, =n, + jn_ is a complex Gaussian RV with 7, and 1
being independent, identically distributed (i.i.d.) real
Gaussian RV’s with zero mean and variance o*f for all /.

An OSTBC transmission can be described by a Nx P
transmission matrix as



gn &a 0 &m
G- g:12 g:zz gf)z : (1)
v & Epv

Here, g, is the codeword transmitted from the pth transmit
antenna at the nth symbol instant, n =1,2,..., N . The code

words are sent in blocks of N symbols. Each codeword g,
is a linear combination of information symbols { X, } and
their conjugates { X, }. The code rate is K /N . For QAM,

the K information symbols { X, } for each block are selected

from an M-ary QAM constellation. For GCOD, GG =D,
where D is an Px P diagonal matrix with the (p, p)th
diagonal element of the form [1], [7]

lp)l‘xl‘z +lp,2‘x2‘2 +.”+lp,K‘xK 2’ p :1929‘"9P> (2)

where {/ pk + are strictly positive numbers [1]. Assume

quasi-static fading so that channel gains remain constant over
an N-symbol block and vary independently from block to
block. We follow the squaring method used for COD in [3] to

obtain the linear processor output for GCOD as
L

X = Z[(bl,k hy szk 1] (3

=1
Here b, =by, 1yp, s = \/lpj, (seethe /, , definitionin (2)
where the subscript p cannot exceed P), and for a fixed
channel realization, {77,, } are independent, non- identical
complex Gaussian RV’s with zero means and variances
{(b,, |, |c,)*} in each dimension. Define A, =b, A,

L
h, = [hl,k7 hz,ka"’hL,k]T »and n, = Zﬂz,k » (3) becomes
=

£z 2
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where 77, is now a complex Gaussian RV with zero mean

and variance ||h, |’ o in each dimension. The modified

n

gain {4, } are still correlated. The equivalent SISO model of

(4) shows that each information symbol is associated with its
own channel gain and Gaussian noise (due to the subscript £).
This simply means that, different information symbol may
vield different SEP. This important discovery has never been
brought up before.

Let £_ = E[|x, |], then the short-term (A, held fixed)

received SNR at the /th channel is given by
E[| hy,x, | .
_ [l 15Xk I"] E, =z, (5)
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where 2 = Zap F JZ05 = g / E,/ zgj is the scaled gain.
Thus E[Zl,k] = El,k = Ecl,k + jEsl,k = Ez,k'\/Eav /253 and

2 2 2 i 2
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z, Zg

. . T
scaled gain vector Z; = [z,;,2,;,...,2; ;] . The comb-

ined received SNR (as in MRC) is y =2z, :i Vi o
where [ denotes Hermitian transpose. Furtherl 1deﬁne
El2:]=Z; =[Z,4, %) prosBr ] When channels are
correlated, the covariance matrix for Z, is an Lx[L
Hermitian matrix given by

C, = El(z, ~Z,)(z, -7,)"]. ©)
C, is positive definite and has L real positive eigenvalues
{ /1, } and hence can be unitary diagonalized as
C,=U,A, U/, where A is a diagonal matrix with
diagonal entries { 4, , } arranged in descending order and U,

is a unitary matrix whose columns are corresponding
eigenvectors. We thus obtain a virtual system with
uncorrelated branches with uncorrelated virtual channel gain

z; :[Z{,kﬂzé,kﬂ"'ﬂzlL,k]T = Ufzk and
Elz, =%, = [Zl',kﬁzé,kﬁ”'ﬁzi,k]T = Uksz ) D
E[Z;jczl,k] = El:;cfl,',k + ﬂz,kgzz' , and
A =Ell 21, P1-12], = 02 LI =12,.,L. (8)
After decorrelation, the new linear processor output is
& A P x, + g ©)
where 77, is now a complex Gaussian noise with zero mean

and variance | h/, I o—j in each dimension for a fixed
3 % i !
channel realization. Since || hl |i=l|h, ||> 7% has exactly the

same PDF as 77, and hence %, = %, .

In the derivations that follow, the subscript & will be
dropped for convenience. The reader should keep in mind

that, from here on, all { Z; } or { h, } are modified correlated

channel gains and should not be confused them with the
original correlated physical channel gains as given in (2).

III. THE GENERAL MGF
We want to find the MGF of y =z”z . Note that
y' =2'"2' =200z =y. So, equivalently, we are to find
the MGF of », . This is much easier to handle since the

components in z' are independent for Gaussian channel
gains. The PDF of z’ is
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where o2 =V[z!,], o, =V[z,]. So the MGF of y is

M, (s) = E{exp| SZ(Zcz +Zsl I}
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The MGF of (11) is a general expression that can be
applied to OSTBC diversity systems in any fading

environment haVing Gaussian  channel  gains. If
o), =0, =0c2/2 (circularly symmetric ~Gaussian
channel), then (11) reduces to, using (8),
2
exp| ) ————
a 1-As | (12)

M, (s)=

[]0-4s)

Both (11) and (12) apply to both correlated and uncorrelated
channels, the {ﬂ, } in (12) takes correlation into account.
(12) can be

readily used to deduce the MGF for Rayleigh, Nakagami-m,
or Ricean fading channels, etc.

Replacing proper values for ﬂ, and | Z, ,’ |,

IV. RECTANGULAR QAM PERFORMANCE FOR OSTBC

Consider rectangular M-QAM transmission in OSTBC
systems over fading channels. Let M = M M, , where M,
and M, are the symbol numbers used respectively in the
horizontal and vertical M-QAM dimension.

Assuming quasi-static fading where the SNR’s {4/ }
remain unchanged over one N symbol block. Then, using
]7:27[ :ZL:];I/ =7 (generally, 7 =% ), the SEP for

=1 =1

M-QAM conditioned on {y, } can be shown to be [4]

Py (p)=| L= 22D |y
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where
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Here, M,(s) = f f.(7 )" dy] is the MGF of y; , and

g=3/(M}+M,
Gaussian channel gains. Then, using (12), we have

—2). Consider only circularly symmetric

/]
g g
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We now consider SEP performance for Rayleigh fading
channels. Results for Nakagami-m and Ricean fading can be
readily extended. However, due space limitation, we will not
produce these results here. As stated earlier, we will treat the
general case of the uncorrelated virtual channels with a
combination of identical and distinct power values (i.e., after
decorrelation). Results for special cases of virtual channels
with identical or distinct channel powers can be readily
deduced from the general results.

If, before decorrelation, the normalized complex channel

gain z; is Gaussian with zero mean and identical variances
in each real dimension, then we have Rayleigh fading. The
decorrelated gain z; will also be Gaussian with zero mean

and identical variances 0 g = a”l = 02 /2 . Then, using
(8), (15) reduces to the Rayleigh MGF as
_ _ __&
| M(—— 55 =M, 55)

_ 1 . (16)

T L
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For channels having combination of identical and distinct
powers, let L, channels have identical SNR 7/, L, channels

have identical SNR ¥, ,..

.» L, channels have identical SNR

R
7, » where z £.=k- Then, (16) becomes

r=1

M —
/= sin? 19)

1

H(l +7 g/sin” )"
r=1

Using variable change z=tané and formulas in [8, eq.
(9.1.1), eq. (45.3.6.1), eq. (45.3.6.11), eq. (45.3.6.13), eq.
(45.3.6.22)], we can get

13 =YY Gr, ), (¢,5.27" )

r=1 s=1
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(18)



where
dbs -1

G(ros)= lim — 4 X - (19)
g7 ) (L, —s) dx™ H(X+g7 )

p#r
When R =1(identical channel powers), we must replace

H(x+g )p in (19) by 1. And in (17), (18),

1n—2 n_2 i ik
Q(a,n,b)z;Z[ . jZL j(—m) (m)

i=0 L

x1,(tana,b,l +b,n—k), a,b real, n>2 integer, (20)
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where
C(u) = (2u — 1)(3’” 3)-- (21/{1‘—1)!!,
2% u! 2%
= SN =] Y- Q=2+

2 u—1)u-2)-- (u—k+1)
O(k) : discrete-time unit impulse. (22)
Substituting (17) and (18) into (13), we have the desired
expression of SEP. Note that, by setting L, =1 for all r, we

have the result for distinct power channels. Then, by setting
R =1, we have the result for identical power channels .

V. NUMERICAL RESULTS

We adopt the rate 3/5 GCOD code using P =6 transmit
antennas as given in [7]. For simplicity, we use one receive
antenna. Thus, we have equivalently an order-6 diversity
system (L = 6). The transmission matrix is of size 30x6 [7,
(6)]. The code uses K =18 and N =30. There are three
groups (group A, B, C) yielding three different SEP’s.
Assuming exponential correlation model, i.e., correlation
coefficient between the I/th and /[’ th channel gain is

py = p"'[5]. Beginning with correlated physical channels
having identical channel powers and using p = 0.8, we find
after

all 6 eigenvalues of (, are distinctive. Thus,

decorrelation, the virtual channels will have distinct channel
powers. The SEP vs. 7 /[, performance curves for groups A,

B, C for 2x8 QAM signaling over Rayleigh fading are

presented in Fig. 1. Monte Catlo simulated results are found
in excellent agreement with the theoretical result.

VI. CONCLUSION

By channel decorrelation, we derive a general MGF
expression from which closed-form SEP is obtained for
arbitrary rectangular QAM signaling in OSTBC-GCOD
diversity systems over correlated Rayleigh fading channels.
We discover that different information symbols may yield
different performance. A GCOD example is given for
demonstration. Theoretical SEP results are found in excellent
agreement with Monte Carlo simulations.
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Figurel. Performance of rate 3/5 OSTBC with GCOD using 6 transmit
antennas for 2x8 QAM over Rayleigh fading channels.



